TABLE OF CONTENT

The Conference

The Conference Schedule

A cross sectional comparative study into gender and school's setting on attitudes towards mathematics. A case of selected schools in the Eastern Cape Province.

Change of Landscape – Opportunities for Access to Science, Engineering and Technology through Robotics, Mentorship and Social Media

Promoting Mathematics and Science competitions: A district initiative
THE CONFERENCE

STEMI COMMUNITY OF PRACTICE CONFERENCE

BACKGROUND

Education and training, research and development are some of the key elements of the National System of Innovation (NSI). One of the major challenges facing our science system is inadequate renewal of the science, engineering, and technology (SET) human capital and making it representative of the country’s demographics. It is against this background that the Department of Science and Technology (DST) initiated the Youth into Science Strategy (YISS). This strategy aims to broaden the pool of matriculants with passes in Mathematics and Science, appropriate to enter for science-based degree studies at higher education institutions and ultimately increase the SET capital in South Africa.

Central to the implementation of the YISS is the use of science, technology, engineering, mathematics and innovation (STEMI) Olympiads and Competitions as instruments to identify learners with potential to follow SET careers. Through this programme the DST intends to provide funding to existing Olympiad and Competition Organisers to increase the number of learners participating in Olympiads and Competitions, as well as coaching mentors and/or educators to support these learners.

The STEMI Olympiads and competitions programme targets the following:

- Learners from grade one to twelve in remote disadvantaged areas, including urban areas (townships) with the objective of increasing the footprint (covering municipal districts with limited prior coverage) of participation, mentoring, and coaching.
- To provide educator training workshops on STEMI Olympiads and Competitions, as well as training and support for mentors.
- Conceptualisation of a strategy towards the establishment of a community of practice for STEMI Olympiads and Competitions.

CONFERENCE SCOPE

The STEMI Olympiads and Competitions Community of Practice Conference is an annual conference that is dedicated to the advancement of the Science, Technology, Engineering, Mathematics, and Innovation (STEMI) Olympiads and Competitions in South Africa by creating a community of practice where best practices are identified and benchmarked. This is achieved by bringing Olympiad and Competition organisers and other industry stakeholders together to present academic and non-academic research and talks and to facilitate a platform for engagement between parties.

Objectives of the conference:

- To positively contribute towards a STEMI-driven culture.
- To create a platform for collaborative problem solving.
- To act as a catalyst between people and organisations.
- To facilitate the development of tools to improve the inflow of science in society.
- To assist in transforming innovative ideas and actions into benchmarked practices.
2017 STEMI Olympiads and Competitions Community of Practice
Conference
14 – 16 March 2017

<table>
<thead>
<tr>
<th>Activity</th>
<th>Delegate</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration</td>
<td>All</td>
<td>Registration Table</td>
</tr>
<tr>
<td>Exhibit walkthrough</td>
<td></td>
<td>Exhibition Area</td>
</tr>
<tr>
<td>Lunch</td>
<td>All</td>
<td>Dining Hall</td>
</tr>
<tr>
<td>Opening and welcome</td>
<td>NRF</td>
<td>Main Venue</td>
</tr>
<tr>
<td>Plan of Action from 2016 & Objectives of the 2017 Conference</td>
<td>Mr Bersan Lesch</td>
<td>Main Venue</td>
</tr>
</tbody>
</table>

Flowing from the 2016 STEMI COP conference and looking ahead, a Plan of Action is presented to the COP for consideration. The objectives of the conference will also be presented.

Participant Feedback from the 2016 STEMI Olympiads and Competitions Community of Practice Conference

At the 2016 STEMI Olympiads and competitions COP an evaluation was done, and the feedback provided, will be shared with the 2017 COP conference delegates.

Recommendations of the 2016 Conference: What has been achieved so far

The progress made since the 2016 COP conference.

Message from ASTEMI EXCO

The Association for STEMI Olympiads and competitions (ASTEMI) is an umbrella body with 16 founding member organisations represented across the spectrum including mathematics, technology and engineering. ASTEMI held its AGM as a preconference event, and the Chairperson will share a message with the COP delegates.

Introduction of the Guest Speaker

Programme Director | Main Venue |
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker/Organisation</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:15 – 14:40</td>
<td>Keynote Address</td>
<td>Vuyiswa Ncontsa</td>
<td>Main Venue</td>
</tr>
<tr>
<td></td>
<td>Ms Ncontsa is the CEO of Bridge. Bridge is an NPO with membership of more than 3000 people representing 650 organisations. Bridge members collaborate in 12 Communities of Practice and host more than 60 face-to-face COP dialogues per year. Ms Ncontsa held prominent positions at Teach SA and the Centre for Education Policy Development and the School Capacity Innovation Programme among others. She has experience in philanthropy and public-private partnerships with international agencies and corporations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:40 – 15:00</td>
<td>Afternoon Tea Break & Exhibition</td>
<td>All</td>
<td>Exhibition Area</td>
</tr>
<tr>
<td>15:00 – 15:15</td>
<td>Preconference Evaluation</td>
<td>Mrs Joyce Khunou</td>
<td>Main Venue</td>
</tr>
<tr>
<td>15:15 – 15:30</td>
<td>Presentation: Discovering Innovation Through Research</td>
<td>Ms Rachel Rayner Australian Volunteers International</td>
<td>Main Venue</td>
</tr>
<tr>
<td></td>
<td>Rachel is on an 18-month stint for the Australian Volunteers International (AVI) in South Africa. She has extensive experience at science centres (National Science and Technology Centre & the Discovery Science and Technology Centre) working in Australia and Vietnam, doing science shows, workshops and exhibitions. She was a Science Communication Fellow with the Ocean Exploration Trust.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:30 – 15:45</td>
<td>Olympiads in the Digital Data Age</td>
<td>Mr Case Rijsdijk</td>
<td>Main Venue</td>
</tr>
<tr>
<td></td>
<td>Case is a retired educator, astronomer and physicist, though still very actively involved with the South African Institute of Physics (SAIP) and other professional bodies. He has presented more than 60 papers at national and international conferences, authored and co-authored books, textbooks and workshop manuals. He has delivered well over a 100 public lectures on Physics and Astronomy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:45 – 16:00</td>
<td>Analysis of Performance of Grade 12 learners with emphasis on Mathematics and Physical Sciences – What impact can the Olympiads and competitions have?</td>
<td>Mr Moloko Matlala NRF/SAASTA</td>
<td>Main Venue</td>
</tr>
<tr>
<td></td>
<td>Moloko is the Manager of the Education unit at SAASTA.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00 – 16:15</td>
<td>Discussion: Questions, Comments & Responses</td>
<td>All</td>
<td>Main Venue</td>
</tr>
<tr>
<td>16:15 – 16:30</td>
<td>A cross sectional comparative study into gender and school’s setting on attitudes towards mathematics: A case of selected schools in the Eastern Cape</td>
<td>T Kwangwari, CS Marange and CK Hlatywayo University of Free State</td>
<td>Main Venue</td>
</tr>
<tr>
<td>16:30 – 16:45</td>
<td>For the love and fear of statistics students attitudes and experiences towards statistics at rural university in the Eastern Cape Province of South Africa</td>
<td>WT Chinyamurindi and SW Gomera University of Fort Hare</td>
<td>Main Venue</td>
</tr>
<tr>
<td></td>
<td>Prof Willie Chinyamurindi is Associate Professor in the Department of Business Economics at UFH. His research focus is on human capital development, career management and use of qualitative methodology within the management sciences.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DAY 2

Programme Director
Mr Bersan Lesch

<table>
<thead>
<tr>
<th>Slot</th>
<th>Activity</th>
<th>Delegate</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>06:30 – 07:30</td>
<td>Breakfast served</td>
<td>Hotel Guests only</td>
<td>Dining Hall</td>
</tr>
<tr>
<td>07:00 – 07:50</td>
<td>Morning Tea</td>
<td>Non-Guests</td>
<td>Registration Area</td>
</tr>
<tr>
<td>08:00 – 08:10</td>
<td>Opening and Welcome</td>
<td>Programme Director</td>
<td>Main Venue</td>
</tr>
<tr>
<td>08:10 – 08:30</td>
<td>Presentation: Report on the Mathematics Olympiads Indaba</td>
<td>Prof Johann Engelbrecht South African Mathematics Foundation</td>
<td>Main Venue</td>
</tr>
<tr>
<td></td>
<td>A pre-conference indaba on Mathematics Olympiads and competitions were held with various stakeholders.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:30 – 08:45</td>
<td>Presentation: Science Communications Competition in SA</td>
<td>Ms Joanne Riley NRF/SAASTA</td>
<td>Main Venue</td>
</tr>
<tr>
<td>08:45 – 09:00</td>
<td>Presentation: Virtual Get excited about Robotics (GEAR) Competition</td>
<td>Tanja Karp, Patricia Gouws & Kabelo Pheeha UNISA</td>
<td>Main Venue</td>
</tr>
<tr>
<td></td>
<td>Dr Tanja Karp is Associate Professor of Electrical and Computer Engineering at Texas Tech University, Lubbock, Texas. She is a U.S. Fulbright Scholar at UNISA. Previously, she was a senior researcher and teaching associate at Mannheim University in Germany. She has published more than 75 journal and conference papers. She received several awards for her excellence in teaching and her robotics programmes for learners. Kabelo is an experienced judge in robotics competitions; head judge for the Open European championships, Africa Open Championships and SA First Lego league (national) and several other regional and local events. He mentors students and ambassadors I-SET at UNISA.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:00 – 09:15</td>
<td>Presentation: Explore it, play it, question it, Igniting an early interest in STEMI</td>
<td>Mr Brent Hutcheson Centre for Education</td>
<td>Main Venue</td>
</tr>
<tr>
<td>Time</td>
<td>Event Description</td>
<td>Speaker/Presenter</td>
<td>Venue</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>09:15 – 09:30</td>
<td>Discussion: Questions, Comments & Responses</td>
<td>All</td>
<td>Main Venue</td>
</tr>
<tr>
<td>09:30 – 09:45</td>
<td>Presentation: Participation and Challenges in International Physics Olympiad (IPHO) and International Chemistry Olympiad (ICHO)</td>
<td>Dr M. Moodley and Mr Ajay Bissessur, UKZN</td>
<td>Main Venue</td>
</tr>
<tr>
<td>09:45 – 10:00</td>
<td>Presentation: SARASSEM as a resource for AstroQuiz</td>
<td>Prof R Medupe, North West University</td>
<td>Main Venue</td>
</tr>
<tr>
<td>10:00 – 10:15</td>
<td>Validity and diagnostic attributes of the SAMO Junior second round</td>
<td>Prof Johann Engelbrecht, SAMF</td>
<td>Main Venue</td>
</tr>
<tr>
<td>10:15 – 10:30</td>
<td>Discussion: Questions, Comments & Responses</td>
<td>All</td>
<td>Main Venue</td>
</tr>
<tr>
<td>10:30 – 10:45</td>
<td>Morning Tea Break, Exhibition</td>
<td>All</td>
<td>Exhibition Area</td>
</tr>
<tr>
<td>10:45 – 11:00</td>
<td>Presentation: STEM readiness for school development</td>
<td>Mr Parthy Chetty, Executive Director, Eskom Expo for Young Scientists</td>
<td>Main Venue</td>
</tr>
<tr>
<td>11:00 – 11:15</td>
<td>Presentation: Diamonds in the sky: Harnessing Olympiads and competitions for astronomy development in Africa</td>
<td>Ms Anja Fourie, SKA</td>
<td>Main Venue</td>
</tr>
<tr>
<td>11:15 – 11:30</td>
<td>Presentation: Impact of the Eskom Expo</td>
<td>Mr Kholiswa Ntshinga, Former Eskom Expo Participant</td>
<td>Main Venue</td>
</tr>
</tbody>
</table>

Dr Moodley is physics lecturer at the University of KwaZulu-Natal. He is the recipient of the NRF Prestigious scholarship for an overseas doctorate. He was instrumental in the establishment of the Centre for Quantum Technology and the Quantum Research Group at UKZN. He is principal coach for the South African Physics Olympiad team and examiner of the National Physical Science Olympiad.

Ajay Bissessur is a Chemistry lecturer at UKZN. He was chairperson of the Scientific committee that hosted the International Junior Science Olympiad in SA. He is member of the International Chemistry Olympiad Committee and team mentor for the South African team. He does the public relations for the School of Chemistry and involved in various outreach activities.

Prof Medupe is Professor of Physics and Astronomy. He has published more than 50 papers on Astrophysics and the history of Astronomy in Africa. He has written non-technical books for children and learners. He is Chairperson of the national Astrophysics and Space Science Programme Consortium. He is a member of the Astronomy Advisory Council of the NRF and of the South African Astronomical Observatory Advisory Board.

Professor Engelbrecht is Executive Director of the South African Mathematics Foundation. He was instrumental in the establishment of the SAMF as well as for South Africa hosting the International Mathematics Olympiad in 2014. He is Emeritus Professor of Mathematics at University of Pretoria and was Deputy Dean: Teaching, Learning and Community Engagement.

Parthy is a teacher by profession, taught at high school level in Durban, worked in the Gauteng Department of Education and a Deputy Chief Education Specialist in the national department. He is the Executive Director of the Eskom Expo for Young Scientists. He previously headed education initiatives of the Intel Corporation in South Africa which expanded into Africa.
<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
<th>Audience</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:30 –</td>
<td>Discussion: Questions, Comments & Responses</td>
<td>All</td>
<td>Main Venue</td>
</tr>
<tr>
<td>11:45</td>
<td>Presentation: Monitoring & Evaluation Framework (STEMI Olympiads and Competitions)</td>
<td>Isaac Ramovha Director: Science Promotion DST</td>
<td>Main Venue</td>
</tr>
<tr>
<td>12:00 –</td>
<td>Briefing for Parallel Sessions</td>
<td>Programme Director</td>
<td>Main Venue</td>
</tr>
<tr>
<td>12:30 –</td>
<td>Lunch</td>
<td>All</td>
<td>Dining Hall</td>
</tr>
<tr>
<td>13h30-15h00</td>
<td>Parallel Sessions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00 –</td>
<td>Tea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:15 –</td>
<td>Report Back: Group A</td>
<td></td>
<td>Main Venue</td>
</tr>
<tr>
<td>15:30 –</td>
<td>Report Back: Group B</td>
<td>All</td>
<td>Main Venue</td>
</tr>
<tr>
<td>15:45 –</td>
<td>Discussion: Questions, Comments & Responses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:15 –</td>
<td>Report Back: Group C</td>
<td></td>
<td>Main Venue</td>
</tr>
<tr>
<td>16:30 –</td>
<td>Report Back: Group D</td>
<td>All</td>
<td>Main Venue</td>
</tr>
<tr>
<td>16:45 –</td>
<td>Discussion: Questions, Comments & Responses</td>
<td>All</td>
<td>Main Venue</td>
</tr>
<tr>
<td>17:15 –</td>
<td>Announcements</td>
<td>Programme Director</td>
<td>Main Venue</td>
</tr>
<tr>
<td>18:00 –</td>
<td>Dinner</td>
<td>Hotel Guests</td>
<td>Dining Hall</td>
</tr>
<tr>
<td>20:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot</td>
<td>Activity</td>
<td>Delegate</td>
<td>Venue</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>06:30 – 07:30</td>
<td>Breakfast served</td>
<td>Hotel Guests</td>
<td>Dining Hall</td>
</tr>
<tr>
<td>07:30 – 08:20</td>
<td>Check-out</td>
<td>Hotel Guests</td>
<td>Reception</td>
</tr>
<tr>
<td>07:30 – 08:20</td>
<td>Morning Tea</td>
<td>Non-Guests</td>
<td>Registration Area</td>
</tr>
<tr>
<td>08:30 – 08:40</td>
<td>Opening and Welcome</td>
<td>Programme Director</td>
<td>Main Venue</td>
</tr>
<tr>
<td>08:40 – 09:30</td>
<td>Summary of the Conference Proceedings: Plenary Recommendations,...</td>
<td>Mr Moloko Matlala</td>
<td>Main Venue</td>
</tr>
<tr>
<td>09:30 – 09:45</td>
<td>Key Deliverables: Short to Long Term</td>
<td>Mr Bersan Lesch</td>
<td>Main Venue</td>
</tr>
<tr>
<td>09:45 – 10:15</td>
<td>Morning Tea Break</td>
<td>All</td>
<td>Exhibition Area</td>
</tr>
<tr>
<td>10:15 – 10:45</td>
<td>Evaluation of the 2017 Conference Objectives</td>
<td>Mr Isaac Ramovha</td>
<td>Main Venue</td>
</tr>
<tr>
<td>10:45 – 11:25</td>
<td>Post Conference Evaluation</td>
<td>Mrs Joyce Khunou</td>
<td>Main Venue</td>
</tr>
<tr>
<td>11:25 – 11:45</td>
<td>Vote of Thanks</td>
<td>Mr Moloko Matlala</td>
<td>Main Venue</td>
</tr>
<tr>
<td>12:30 – 13:00</td>
<td>Lunch</td>
<td>All</td>
<td>Dining Hall</td>
</tr>
<tr>
<td>13:30</td>
<td>Departure</td>
<td>All</td>
<td></td>
</tr>
</tbody>
</table>
An empirical cross-sectional analysis on attitudes towards mathematics. A case of selected high schools in the Eastern Cape Province of South Africa.

T. Kwangwari* ; C. S. Marange* ; C. K. Hlatywayo**

1Department of Statistics and Biostatistics, University of Fort Hare, Alice Campus, South Africa E-mail: taps_kay@yahoo.com

2Department of Statistics and Biostatistics, University of Fort Hare, East London Campus, South Africa E-mail: emarange@ufh.ac.za

3Department of Industrial Psychology, University of Fort Hare, Alice Campus, South Africa E-mail: vakendie@gmail.com

Corresponding author: Mr Tapiwa Kwangwari; email: taps_kay@yahoo.com
Department of Statistics and Biostatistics; University of Fort Hare, Private Bag X1314 Alice campus 5700;

Introduction

- Background of Study

2 Study Objective/s

- Objective and Hypothesis

3 Methodology

- Methodology: Participants
- Methodology: Measures
- Methodology: Data Analysis

4 Findings

5 Conclusions and Recommendations

6 Reference
Abstract

Learners’ success in mathematics depends on the attitude towards Mathematics. This study tends to look at the effect of attitude towards Mathematics (confidence and enjoyment), and English as the medium of instruction influence achievement in Mathematics. The school settings (rural and urban) was also evaluated to see how it affects performance in Mathematics. The study was based on a survey of high school learners’ in the Eastern Cape Province of South Africa. Sample of the study was 500 learners (male = 241 and female = 259) from grade 10 to 12. A stepwise multiple regression model revealed that, performance in English ($\beta_1 = 0.645; t = 18.444; p = <0.0001$), confidence ($\beta_2 = 6.631; t = 7.024; p = <0.0001$) and enjoyment ($\beta_3 = 2.388; t = 2.328; p = 0.020$) have a positive significant effect on performance in Mathematics. A hierarchical multiple regression models further showed that performance in English adds unique variance in predicting performance in Mathematics above and beyond that which is predicted by the attitude constructs ($\Delta R^2 = 0.316; \Delta F = 323.275; \text{Sig } \Delta F = <0.0001$).

Key words: Attitudes, Confidence, Enjoyment; Mathematics, Regression Analysis

Introduction

A negative attitude towards mathematics can be a disease which if not controlled becomes contagious to the learners. Sam (2002) claimed that, many students are scared of mathematics and feel powerless in the presence of mathematical ideas. Ernest (1996), learners regards mathematics as “difficult”, cold, abstract and in many cultures, largely masculine. Learners are easily influenced by others and adopt a negative attitude and it becomes a major problem when the majority are underperforming due to the same factor. Hannula (2006), pointed out that a mathematics learner’s liking or disliking of mathematics is derived from his/her belief structure. He further added that, people’s beliefs and attitude towards mathematics are shaped by individual personal characteristics and experience related to their academic self-image. Nicolaïdou and Philippou (2004), discovered that, learners who do well in Mathematics are those who are well motivated with a positive attitude and a high self-confidence towards the subject. They further postulate that, attitudes towards Mathematics and self-efficacy are the predictors of performance. If the learners believe and have an interest in the subject, they will not struggle to tackle anything concerning that subject. Mutodi (2014) found a strong positive correlation between performance and perception constructs such as self-confidence and interests in mathematics. Sinyosi (2015) suggest that, learners’ self-confidence and positive self-esteem is developed by participation in supervised extra mathematics lessons and extra-mural activities.

According to the South African Department of Basic Education (2014), the higher rates of poor performance in all the learning areas is much contributed by the provinces that are underdeveloped e.g. Limpopo Province and the Eastern Cape. The rural setting of the school has got an impact towards confidence, enjoyment and performance in mathematics compared to the urban settings. Nkambule, et al (2011) states that despite several interventions, education in rural areas continues to face a set of challenges owing to, among other factors, the diverse geographic location of the schools, diverse learners’ background and diverse learning styles.

Some interesting arguments on why learners in rural areas are lagging behind in terms of performance in mathematics were noted by Sinyosi (2015). He asserts that, most of the rural areas in South Africa are behind in terms of the use of science and technology because the state intervention and assistance is directed to developing white scientists not black people residing in the rural areas. Another notion was that, in the rural areas, parents contributes in changing the attitude of learners towards learning especially the subject of mathematics. Saritas, et al (2009), students’ achievement is highly correlated with the educational attainment of parents. Sinyosi (2015), education attainment of parents serves as an indicator of attitudes and values which parents use to create a good environment promoting increased learning desire among children while in calculating their desire for achievement on the other hand. Parents act as role models, guiding and encouraging their children to pursue high educational goals and desires, Sinyosi (2015). Therefore, a positive attitude of learners towards mathematics starts from their background that is their parental involvement and guidance.

Performance and Attitudes towards Mathematics

Gender difference influences the attitude in mathematics with boys out-performing girls according to (Knahwa 2012, Ochwo 2013). Other studies show that, girls have more anxiety when learning mathematics (Hyde, Fennema, Ryan, Frost & Hopp 1990; Karim & Venkatesan 2009; Opolet-Omun, 2005). Girls in the rural school setting performs less compared to boys in the same school setting (Tapia, 2004). There are many factors which distracts learning of the girls in the rural areas, such as, the responsibilities of housing chores, early pregnancies, absenteeism due to effects of shortage of sanitary products etc. In the South African context, according to Moyana (1996), there is still an existing and disturbing sex difference in mathematics learning and achievement. Moyana (1996) noted that, there is low representation of women in scientific and technological fields, less number of women studying mathematics and available statistics showed a general male superiority in mathematics achievements. In many of the rural areas, girls face a number of challenges affecting their learning of mathematics in South Africa. Girls’ education is very essential and there is a saying that says, “When you educate a woman you educate the world”. Alabi (2014) asserts that, education prepares a person especially a girl-child, to fit properly into the web of social interaction and equally enhance the best performance in the social roles. Alabi (2014) noted some of the challenges in the Nigerian context and they are similar compared to the South African situation. Both the two countries are developing and they face same problems in the rural areas. Alabi (2014) postulated that, there is always injustice against the girl child in most parts of the world especially in Africa and Asian countries. According to his assertion, there is female feticide, female infanticide, sexual abuse, marginalization in terms of nutrition, health care, education, violence against women and early pregnancies.
English as a medium of instruction

English has some significant effect on learning and also on the attitude of learners towards Mathematics. Learners’ interpretation of mathematics concepts determines their understanding and eventually their performance. Cocking & Mestre (2004), as cited in Tsanwani (2009) discussed that mother tongue is very important to the clear formulation of mathematical concepts as all ideas are communicated between the teacher and the learner, either through oral or written materials. Tsanwani (2008) was studying about how English as a language affect performance in mathematics especially in disadvantaged learners. He further cited Orton (1992: 141) when he postulated that; “Communicating mathematical ideas so that the message is adequately understood is difficult enough when the teacher and learner have a common first language, but the problem is more acute when the preferred language differ.” Most learners prefer to be taught in their vernacular because they understand it better whilst some teachers feel comfortable teaching using the English language. The problem usually surfaces when it comes to interpretation of Mathematics concepts. When mathematics is presented in English; those learners who cannot articulate the language always suffer. According to the study done by Raja (2010) in Malaysia, students especially from the rural schools are believed to have problems in learning mathematics and science in English due to their lack of English proficiency. This affects the students’ achievement grades in mathematics and science subjects, especially in the public exams.

Study objectives

The general objective of the study was to evaluate the effect of confidence, enjoyment and performance in English on performance in mathematics. Also the study explored the extent to which performance in English add unique variance in predicting performance in mathematics above and beyond which is predicted by confidence and enjoyment among high school students.

Methodology

Participants: The study was carried out in Idutywa town in the Eastern Cape province of South Africa. Two schools were selected; one school is located in an urban setting and the other in the rural areas. The one in an urban setting has most of the learners coming from middle and higher income families. The one located in the rural areas has majority of its learners coming from disadvantaged areas. The two schools provided a list with names, gender, grade and mid-year scores of all grades 10 to 12 students doing mathematics. We used a standard recruitment protocol to invite them to participate in the study. Using computer-generated number sequences, we randomly selected 500 learners such that the sample included equal numbers of male and female as well as equal number across the grades. Learners doing mathematics in grades 10 to 12 who had been randomly selected were eligible. Recruiters contacted the randomly selected learners to determine their eligibility, willingness, and availability to participate in the study.

Ethical Consideration: Before the study was carried out, letters to seek for the permission to do the research were drafted and sent to the Principals of the two schools. Learners were informed and they indicated their consent by voluntarily admitting to participate in the study. Parental consent was obtained for all learners below the age of 18.

Data Collection and Measures: The data collection instrument was a survey questionnaire adopted from a project conducted by Wong and Chen (2012). The instrument scored Cronbach’s alpha coefficient greater than 0.75 for all the major constructs. The questionnaire was a 5-point scale, 1 (Strongly Disagree); 2 (Disagree); 3 (Neutral); 4 (Agree); 5 (Strongly Agree). The construction of this questionnaire was basically guided by the following theoretical ideas; the confidence scale covered learners’ self-concept of the ability to do the mathematics and the enjoyment scale examined the degree to which students enjoyed studying mathematics. The learners took about 20 minutes to answer the questionnaire. The questionnaire also included a section for demographic features. Performance in mathematics and English were measured using the learners’ mid-year marks. The questions were read aloud and clarified to the learners so as to avoid misunderstanding and omission of questions.

Data Analysis: SPSS version 23 and SAS 9.1 were used for analysis. A normality test for the regression models was done using the Q-Q plots for residuals. Accessing these plots we found out that the points of the expected against the observed cumulative probabilities were lying on the line, hence the normality assumption for linear regression modelling was satisfied. Pearson’s correlation coefficient was used for correlation analysis. Multicollinearity diagnosis was done for each model and the Durbin-Watson test was used to check for first order linear auto-correlation in our multiple linear regression data. All tests were carried out at 5% level of significance. To examine how the individual attitude towards mathematics constructs and performance in English affects the prediction of performance in mathematics, multiple regression models were used. The predicting variables, confidence, enjoyment, usefulness and performance in English were added to the model. To select a good model, stepwise regression was implemented. It is a semi-automated process of building a model successively adding or removing variables based solely on the t-statistics of their estimated coefficients. Hierarchical regression was also used to see the effect of adding performance in English to attitude in the prediction of performance in mathematics.

Results

The demographic profile of the respondents

A descriptive approach was used to describe the demographic variables of the study (see Table 1 below). The study was carried out from population size of 500 learners from two schools with each school contributing 250 learners. The majority of the respondents (51.8 %, n = 259) are females while male respondents comprised 48.2% of the study sample (n = 241). From the information in the table, the number of learners from grade 10 is 210 contributing 42.0% of the respondents and they were the majority of the total sample space. The grade 11 learners are 140 making 28.0% of the respondents. The grade 12 learners comprised 30.0% (n = 150) of the respondents. The average age of the respondents is 18 years.
Mean Comparisons of Demographic Features by the Major Study Constructs

Table 2 below depicts an independent-samples test which compared the means between male and female student’s levels on the attitudes and performance variables. Levene's test for homogeneity of variance (homoscedasticity) was used. This test verified that the assumption of equal variances holds in all samples. Significant differences in means between males and females were only noticed on confidence and performance in English. Males (mean = 3.3838; SD = 0.78560) showed a significantly higher mean level of confidence than their female (mean = 3.1824; SD = 0.72220) counterparts (t = 2.986; df = 498; Pr > |t| = 0.003). This shows that male students had higher mean levels of confidence than male students. However, females (mean = 49.7104; SD = 19.33740) showed a significantly higher mean level of English marks than their male (mean = 44.0788; SD = 19.11320) counterparts (t = -3.272; df = 498; Pr > |t| = 0.001). Thus females perform significantly better in English than males.

Table 2: T-Tests for Mean Gender Differences on Study Variables

<table>
<thead>
<tr>
<th>Study Variable</th>
<th>Gender</th>
<th>Mean</th>
<th>SD</th>
<th>Levene's Test for Equality of Variance</th>
<th>T-test for Equality of Means</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>Sig.</td>
<td>t</td>
<td>df</td>
</tr>
<tr>
<td>Confidence</td>
<td>Male</td>
<td>3.3838</td>
<td>0.78560</td>
<td>2.448</td>
<td>0.118</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>3.1824</td>
<td>0.72220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enjoyment</td>
<td>Male</td>
<td>3.7260</td>
<td>0.68852</td>
<td>1.028</td>
<td>0.311</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>3.6841</td>
<td>0.72780</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maths</td>
<td>Male</td>
<td>38.2449</td>
<td>20.68258</td>
<td>1.214</td>
<td>0.271</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>39.2973</td>
<td>20.90103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>Male</td>
<td>44.0788</td>
<td>19.11320</td>
<td>0.005</td>
<td>0.942</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>49.7104</td>
<td>19.33740</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Significant differences with equal variances assumed
*Significant differences with equal variances not assumed
We also carried a comparison of the means of the major study constructs between the two selected schools. Table 3 below shows an independent-samples test which compared the means between the two schools on the attitudes’ constructs and performance variables. Levene's test for homogeneity of variance (homoscedasticity) was used. This test verified that the assumption of equal variances holds in comparisons of enjoyment and performance in English. As for, confidence and performance in mathematics equality of variances were not assumed. Significant differences were noticed on all study variables. The urban school showed a significantly higher mean level for all the variables. This shows that the urban school had significant higher mean levels on confidence ($t = 4.486; df = 489.6; Pr > |t| = 0.001$), performance in mathematics ($t = 22.200; df = 449.0; Pr > |t| = 0.001$) and performance in English ($t = 23.795; df = 498; Pr > |t| = 0.001$) than the rural school.

Table 3: T-Tests for Mean School Setting Differences on Study Variables

<table>
<thead>
<tr>
<th>Study Variable</th>
<th>Setting</th>
<th>Mean</th>
<th>SD</th>
<th>Levene's Test for Equality of Variance</th>
<th>t-test for Equality of Means</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>Sig.</td>
<td>t</td>
<td>df</td>
</tr>
<tr>
<td>Confidence</td>
<td>Urban</td>
<td>3.4290</td>
<td>0.79260</td>
<td>5.498</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>Rural</td>
<td>3.1300</td>
<td>0.69464</td>
<td>5.498</td>
<td>0.019</td>
</tr>
<tr>
<td>Enjoyment</td>
<td>Urban</td>
<td>3.8448</td>
<td>0.65786</td>
<td>1.744</td>
<td>0.187</td>
</tr>
<tr>
<td></td>
<td>Rural</td>
<td>3.5650</td>
<td>0.73086</td>
<td>1.744</td>
<td>0.187</td>
</tr>
<tr>
<td>Maths</td>
<td>Urban</td>
<td>53.4320</td>
<td>17.01043</td>
<td>21.978</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Rural</td>
<td>24.1480</td>
<td>12.06867</td>
<td>21.978</td>
<td>0.000</td>
</tr>
<tr>
<td>English</td>
<td>Urban</td>
<td>61.1440</td>
<td>13.89733</td>
<td>1.348</td>
<td>0.246</td>
</tr>
<tr>
<td></td>
<td>Rural</td>
<td>32.8480</td>
<td>12.66438</td>
<td>1.348</td>
<td>0.246</td>
</tr>
</tbody>
</table>

**Significant differences with equal variances assumed
*Significant differences with equal variances not assumed

Correlation Analysis of Theoretical Constructs

Pearson correlation analysis gave preparatory decomposition into the study variables. Table 4 illustrates the variables presented in the study. All the variables were significantly correlated to performance in mathematics. Thus, performance in mathematics was significantly moderately positively correlated to confidence ($r = 0.390; p = <0.0001$); enjoyment ($r = 0.327; p = <0.0001$), and with performance in English ($r = 0.664; p = <0.0001$).

Table 4: Pearson product-moment correlations (r) and significance probabilities (p) for relations of performance in mathematics to theoretical constructs

<table>
<thead>
<tr>
<th>Theoretical Constructs</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Confidence</td>
<td>0.390</td>
<td><0.0001**</td>
</tr>
<tr>
<td>2 Enjoyment</td>
<td>0.327</td>
<td><0.0001**</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 English</td>
<td>0.664</td>
<td><0.0001**</td>
</tr>
</tbody>
</table>

** Correlation is remarkable when the significant level is 0.01 (Two-tailed test).
Regression of attitudes and performance in English on performance in Mathematics

The stepwise procedure yielded a total of three significant models. Table 5 below shows that the first significant model was the one with performance in English as a predictor variable on performance in Mathematics ($F = 391.826; df = 1; p < 0.0001$). The standardized β coefficients in Table 6, shows that performance in English has a significant positive effect on performance in Mathematics ($\beta_1 = 0.717; t = 19.795; p < 0.0001$). Multicollinearity is non-existent in this linear regression model as tolerance was > 0.1 (and VIF < 10) for the significant variable (performance in English). Thus in the regression model collinearity problem does not exist among variables. The resulting final unstandardized model yields:

$$\text{Performance in Mathematics} = 5.166 + 0.645 \times \text{Performance in English} + \text{residual}$$

The second significant variable that was added to the model was confidence which yielded a significant model ($F = 72.579; df = 2; p < 0.0001$). The collinearity diagnostics in Table 6 shows that multicollinearity does not exist in this 2nd regression model (Tol > 0.1 (or VIF < 10) for all variables). Parameter estimates show that both performance in English and confidence have significant positive effect on performance in Mathematics, and the standardized regression coefficients are $\beta_1 = 0.666$ ($p = <0.0001$) and $\beta_2 = 7.469$ ($p = <0.0001$) respectively. Thus, we can get the standardized regression equation of performance in Mathematics:

$$\text{Performance in Mathematics} = 18.444 + 0.717 \times \text{Performance in English} + 6.631 \times \text{Confidence} + \text{residual}$$

Enjoyment was the last significant variable to be added to the regression model. This yielded a significant linear regression model ($F = 177.091; p = 0.0001$). Durbin-Watson test for auto-correlation ($d = 1.564$) is between the two critical values of $1.5 < d < 2.5$ and therefore we can assume that there is no first order linear auto-correlation in our multiple linear regression data. In table 5, the variance inflation factor (VIF) of each independent variable is between 0.804 and 1.244. According to the standard of statistical test, variance inflation factor (VIF) less than 10 and tolerance greater than 0.1 indicated that collinearity problem does not exist among variables. Thus in the regression model collinearity problem does not exist among variables. The parameter estimates in Table 6 shows that all the predictor variables, performance in English as a predictor variable on performance in Mathematics ($F = 391.826; df = 1; p < 0.0001$). The standardized regression coefficients are $\beta_1 = 0.666$ ($p = <0.0001$) and $\beta_2 = 7.469$ ($p = <0.0001$) respectively. Thus, we can get the standardized regression equation of performance in Mathematics:

$$\text{Performance in Mathematics} = 18.444 + 0.645 \times \text{Performance in English} + 6.631 \times \text{Confidence} + 7.469 \times \text{Enjoyment} + \text{residual}$$

Table 5: Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R-Square</th>
<th>Adjusted R-Square</th>
<th>ΔR^2</th>
<th>df 1</th>
<th>df 2</th>
<th>ΔF</th>
<th>Sig ΔF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.442a</td>
<td>0.441</td>
<td>0.000</td>
<td>1</td>
<td>494</td>
<td>391.82</td>
<td><0.0001**</td>
</tr>
<tr>
<td>2</td>
<td>0.514b</td>
<td>0.512</td>
<td>0.000</td>
<td>1</td>
<td>493</td>
<td>72.579</td>
<td><0.0001**</td>
</tr>
<tr>
<td>3</td>
<td>0.519c</td>
<td>0.516</td>
<td>0.000</td>
<td>1</td>
<td>492</td>
<td>5.421</td>
<td>0.0000**</td>
</tr>
</tbody>
</table>

*a,b,c: Significant change in amount of variation of dependent variable being explained by the predictors.

Table 6: Parameter Estimates

<table>
<thead>
<tr>
<th>Model/Parameter</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Constant)</td>
<td>5.166</td>
<td>1.839</td>
<td>2.809</td>
<td>.005*</td>
<td>1.000</td>
</tr>
<tr>
<td>Performance in English</td>
<td>0.717</td>
<td>0.036</td>
<td>0.665</td>
<td>19.795</td>
<td>.000*</td>
</tr>
<tr>
<td>2 (Constant)</td>
<td>-16.63</td>
<td>3.082</td>
<td>-5.395</td>
<td>.000*</td>
<td>1.000</td>
</tr>
<tr>
<td>Performance in English</td>
<td>0.660</td>
<td>0.035</td>
<td>0.612</td>
<td>19.109</td>
<td>.000*</td>
</tr>
<tr>
<td>Confidence</td>
<td>7.469</td>
<td>0.877</td>
<td>8.519</td>
<td>.000*</td>
<td>1.000</td>
</tr>
<tr>
<td>3 (Constant)</td>
<td>-22.03</td>
<td>3.848</td>
<td>-5.326</td>
<td>.000*</td>
<td>1.000</td>
</tr>
<tr>
<td>Performance in English</td>
<td>0.645</td>
<td>0.035</td>
<td>0.598</td>
<td>18.444</td>
<td>.000*</td>
</tr>
<tr>
<td>Confidence</td>
<td>6.831</td>
<td>0.944</td>
<td>7.024</td>
<td>.000*</td>
<td>1.000</td>
</tr>
<tr>
<td>Enjoyment</td>
<td>2.388</td>
<td>1.026</td>
<td>2.328</td>
<td>.020*</td>
<td>1.216</td>
</tr>
</tbody>
</table>

Note: Dependent Variable: Performance in Mathematics

*aSignificant effect.
Hierarchical Multiple Regression Analyses

To examine if performance in English add unique variance in predicting performance in mathematics above and beyond that which is predicted by the four attitude constructs, a hierarchical multiple regression model was used. The predicting variables, confidence and enjoyment were added to the model first and then performance in English. The R^2 change was noted. A hypothesis test using the F-test was done to test whether the change in R^2 is significant after addition of each of performance in English to the constructs of attitude.

Table 7: Summary of hierarchical multiple regression analyses testing attitude constructs and performance in English in the prediction of performance in mathematics

<table>
<thead>
<tr>
<th>Variable</th>
<th>F</th>
<th>df_2</th>
<th>R^2</th>
<th>df_1</th>
<th>Sig. F_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attitude Constructs</td>
<td>31.599</td>
<td>491</td>
<td>0.205</td>
<td>491</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Performance in English</td>
<td>323.275</td>
<td>490</td>
<td>0.521</td>
<td>490</td>
<td><0.0001*</td>
</tr>
</tbody>
</table>

*Significant change in amount of variation of dependent variable being explained by the predictors.

Table 7 above shows that attitude towards mathematics explains 20.5% of the variation in the dependent variable (R-Square = 0.205). Combined with performance in English, the resultant model accounted for a total of 31.6% of the variation in performance in mathematics. Thus this model adds significant variation to the first model. This means adding performance in English to attitude towards mathematics as independent variables on performance in mathematics results in a significant increase in the amount of variation explained by the model ($\Delta R^2 = 0.316; \Delta F = 323.275; \text{Sig } \Delta F = <0.0001$).

Discussion

From this study it has been found out that learners who perform very well in mathematics have high self-confidence and enjoy the study of the subject. In this study, confidence as a factor does have a significant effect on the performance of mathematics. The result is supported by findings from study which was carried out by Mutodi (2014) concerning the influence of students’ perceptions on mathematics performance. There is also a profound effect of the English language as a medium of instruction compared to learners studying in a town school. Learners in the rural areas struggle to articulate and assimilate concepts of mathematics since they are always presented in English. Learners who are good in English can understand mathematics concepts better. This result is supported by Howie (2007), from the study carried out in South Africa about the effect of language and factors affecting secondary students’ performance in mathematics. The author’s findings reviewed that, pupil’s proficiency of English was a strong predictor of their success in Mathematics.

The study has helped in shedding light on which students’ exhibit higher motivation in mathematics. Our findings agree with previous research on how enjoyment is an important factor in performance in mathematics (Balentyné, & Varga, 2017; Herges, Duffied, Martin, & Wageman, 2017). In light of this learners who find mathematics enjoyable and are confident increases their prospects of success. Our findings align to the link between academic abilities and confidence identified by Bandura, (1993). In adopting our findings researchers must be mindful of the context and environment in which the study was conducted. Findings extend on the role of the English language on how it aids learner in an urban environment is more exposed and more exposed to it thus more confident and performs better.
Recommendations

Learners’ attitude can be changed by transforming the way they perceive mathematics. We can do that by introducing a method of teaching that is accommodating to the learners. Teaching and learning must be learner centred. In order to boost confidence and enjoyment of mathematics, learners need to be sequentially motivated. Differences between the rural and urban schools go beyond the instructor. Policy makers must play a key role as a lot of investment is required especially in the black dominated environments in which the study was conducted. Embracing of technology can also improve the challenges identified.

Findings of the study are useful to stakeholders as we seek to find meaningful ways of making mathematics acceptable by all and keep learners engaged through addressing the identified gender and school setting disparities. More resources should be channelled towards the girl child so as to boost their confidence in doing mathematics. Rural schools should initiate measures and interventions for learners to have more confidence and enjoyment in doing mathematics. There is need for teachers, parents, and any other education stake holder to enhance positive attitudes towards mathematics through encouraging both female and male learners as well as rural and urban learners to equally embrace mathematics.

Acknowledgements

We would like to thank the Govan Mbeki Research and Development Centre for sponsoring this study through their supervisor linked bursaries.

References

Department of Basic Education (March 2016), Education Statistics in South Africa 2014. Government Publishers

Lerch H. H (1961) Arithmetic instructions changes pupils’ attitude towards Mathematics

Raja, M. R (2010); Change of medium of instructions in the teaching of mathematics and science, University of Technology. Malaysia.

Change of Landscape – Opportunities for Access to Science, Engineering and Technology through Robotics, Mentorship and Social Media

PM Gouws1
1School of Computing, College of Science, Engineering and Technology, University of South Africa

Tanja Karp2
2Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas, USA

K Pheha3
3Inspired Science, Engineering and Technology Community Engagement (I-SET) Flagship Project, College of Science, Engineering and Technology, University of South Africa

Abstract – The Inspired towards Science, Engineering and Technology (I-SET) is a community engagement project of the College of Science, Engineering and Technology (CSET) at the University of South Africa (Unisa). The main purpose of this community engagement project is to inspire, to create awareness and to provide access to Science, Engineering and Technology through the fun activities of robotics. Robotics introduces the engineering fundamentals and programming principles, and also develops 21st century skills (problem solving, critical thinking, and collaborative learning). Mentoring is accomplished through community engagement and outreach, by learners, students, educators, academicians and community leaders. Social media provides the opportunities for robotics teams of learners to communicate, collaborate, share content and compete. We are introducing a new robotics competition that avoids the challenges of distance and the costs to travel and allows teams to meet other teams locally, nationally and internationally through the use of digital media. This paper proposes an envisaged way forward to allow more learners access to inspired science, engineering and technology through robotics.

Keywords: robotics, STEMI, community engagement

1 Introduction

The Inspired towards Science, Engineering and Technology (I-SET) is a community engagement project of the College of Science, Engineering and Technology (CSET) at the University of South Africa (Unisa). The main purpose of this community engagement project is to inspire, to create awareness and to provide access to Science, Engineering and Technology through the fun activities of robotics. Science, Technology, Engineering, Mathematics, and Innovation (STEMI) are presented to learners and students through community engagement and outreach, by mentors including students, educators, academics and community leaders. However, not all learners have access to robotics due to the constraints of location, distance, time and costs incurred. This paper presents opportunities proposed within the I-SET project, some in collaboration with Texas Tech University (TTU), to overcome these constraints so as to ensure access for a growing community of learners and mentor, thereby changing the landscape for inspired science, engineering and technology.

1.1 Robotics

The learners use the MindStorms EV3 or NXT kit to build robots, and transform robotics. Through robotics, learners are introduced to the fundamentals of engineering (including the concepts of friction, traction, centre of gravity, axles and pulleys) when building the robot, and grapple with the principles and concepts of programming (including repetition loops, decision-making switches, variables, constants, and data) to ensure that the robot can be programmed to successfully accomplish a specific task. However, during these robotics sessions, teams of learners implicitly learn and develop 21st century skills, including but not limited to problem solving, critical thinking, and collaborative learning.

1.2 Mentorship

Mentoring in robotics within the I-SET project is accomplished through community engagement and outreach, by learners, students, educators, academicians and community leaders. Mentorship refers to the passing on of knowledge and skills from one person to another, from more experienced to less experienced. This mentorship, however, usually pertains to a specific area of expertise. Mentorship can refer to any interaction where such knowledge or skills are passed on. It is highlighted that there exists a lack of university-based service-learning mentoring programmes [1].

1.3 Social media

Social media are internet applications that allow for a virtual community of social media users to co-create and sharing of content, and to collaborate and communicate between members of a virtual community [2]. Thus, the use of social media can be considered a tool to overcome the challenges of distance, location and costs.

1.4 Current robotics landscape

The landscape may be viewed from a number of perspectives – and what you see may depend on your distance from and focus on the issues. You could also choose to close your eyes to ignore the landscape (perhaps only for a while) – but then you may miss the inspired changes that are about to happen!

Our landscape as learners inspired to learn: The learners that attend I-SET robotics workshops are keen and eager to build and program. The noise levels of excitement during a workshop, the reluctance to leave an ended workshop, and the eagerness to inquire when the next workshop starts all bear testimony to a cohort of learners that want to learn. For some learners, there is only ever one opportunity to build and program a robot. A very small number of learners in South Africa are given the opportunity to be coached and mentored in robotics within the school environment, i.e. within the curriculum or as an extra-curricular activity of the school.

Our landscape of mentors and coaches: The educators and community leaders (the potential coaches and mentors of teams) are intimidated by the prospect of teaching engineering and programming. There are very few educators and community leaders dedicated to make a difference for a team of learners. The lack of support and equipping of coaches and mentors is being addressed by I-SET.

Our landscape of students: The students in the sciences and engineering have limited exposure to practical applications of science, engineering and technology, as well as the needs of the learners. Graduateness should include an awareness of the needs of science, engineering and technology. Opportunities are required for a play-it-forward SET model, for the mutual benefit of all student and learner scientists, engineers and technologist involved.

Our landscape in recognition for our youth of Science, Engineering and Technology: when a team does qualify as National Champion in a robotics competition, there is zero support for the team to proudly represent South Africa and Africa at an international event.

Our landscape in a world perspective: In the world there are about 25,000 teams of learners that participate annually in the For Inspiration and Recognition of Science, Engineering and Technology (FIRST) Lego League (FLL) robotics competition. The entire African continent does not have 250 teams (i.e. not even 1%).

In section 2 of this paper, the concepts of robotics, mentorship and social media are considered in a literature review, specifically with reference to the creation of access to and opportunities in robotics. Section 3 elaborates on the I-SET initiative within the current robotics landscape. Section 4 considers proposed initiatives to address the challenges experienced in the current landscape, within suggestions and recommendations to change the landscape. Section 5 concludes with a visionary landscape of inspired science, engineering and technology, and presents recommendations for future I-SET initiatives to address the changing of a landscape to inspire science, engineering and technology.
2 Literature
To change the landscape, the current landscape needs to be understood. Tools, techniques and initiatives that may be used to change the landscape must be identified. Currently, robotics is presented as an opportunity to inspire the learning of Science, Engineering and Technology. Mentorship refers to the engaged sharing of skills and knowledge, and social media is a tool that may be used to alleviate some of the challenges that hinder sustainable access to robotics for a growing community of learners. It is these three factors that are considered the focus of this paper.

2.1 Robotics
Robotics may be used to teach and to learn the fundamentals of engineering (e.g. friction and traction, centre of gravity and weight distribution, axles, wheels, pulleys, gears, power and transmission, rolling resistance, backlash, and mechanical efficiency) for the building of a robot for a specific function. However, the robot also needs to complete tasks. To do this, the principles of programming are required to program the robot (e.g. repetition and loops, decision-making and switches, constants, variables, stored procedures). These robots can then compete in robotics competitions [4][3].

The presentation of robotics for the inspiration of Science, Engineering and Technology may take on a range of options. The robotics classes are usually presented by educators as an extra-curricular activity at schools or by community leaders as a community activity in communities.

Robotics teams are encouraged to represent the school at competitions, although many other alternatives such as robotics themes, art and engineering combinations, story-telling and exhibitions have also been proposed as entry points into robotics [5].

2.2 Mentorship in Science, Engineering Technology and Robotics
The mentorship of Science, Technology, Engineering and Mathematics (STEM) is considered vital for inspiring learners and students in the learning of Science, Engineering and Technology. For the promotion of mentoring in robotics, the For Inspiration and Recognition of Science and Technology (FIRST) Lego League (FLL) promotes the concept of team work, where each team has at least one coach/ mentor. Both a coach and a mentor are recommended. FIRST have a collection of guides and online resources available for the coaching and or mentoring of these robotics teams. There are also guidelines for effective mentoring. However, the learners are not only mentored in the robotics aspects per se (i.e. engineering and programming). Participation in a robotics competition requires that the learners (of up to ten learners in a group) also collaborate as a team. This encourages core values, communication and participation. The FLL robotics competition also requires that the learners grapple with a real world issue (e.g. food contamination, old people, the new ways of learning and dealing with trash) according to the annual research theme of the competition, and are required to research and present their team solution. This encourages the so-called 21st century skills including problem-solving skills, innovative thinking and changing perceptions of the world.

The options for mentorship in the presentation of robotics and participation in robotics competitions thus spans a range of skills and knowledge related to Science, Engineering and Technology, as well as the identified 21st century skills of problem-solving, innovation, critical thinking and collaboration.

Students, however, can also be mentored in robotics by academics as part of undergraduate course work. REF. Academics can also mentor educators in robotics as part of community engagement and outreach.

2.3 Social media
Opportunities in the use of social media to ensure access to science, engineering and technology exist. A plethora of social media (websites, online tutorials, YouTube videos, Vimeo, Facebbook) and digital resources exist to support the furtherance of science, engineering and technology through robotics.

Tutorials online: these are usually presented by the learners in teams to explain a concept (engineering or programming) in terms that fellow learners can grasp. The quality and relevance of the tutorials vary. These tutorials may be once off tutorials, or a series covering an aspect of robotics. There are professional tutorial presented by universities, NPOs and businesses, and there are also tutorials presented by young learners with an enthusiasm to inspire.

YouTube videos of robotics competitions (FLL, WRO): Teams are very eager to share their accomplishments (albeit just a segment of a mission challenge). This is specifically true for high scoring teams, who are eager to assist and guide newer teams.

• Communities of learning: There exist virtual groups that maintain and develop an ongoing collection of resources. To facilitate communication, there is an option to subscribe to email listings.

• Facebook: Teams are encouraged to collaborate and share information, especially to encourage newer teams, graciously! Teams usually invite other teams as friends, and are quick to post any exciting news (with pictures!).

• Research papers: There are a number of research papers pertaining to ongoing research and anecdotal evidence of the benefits of teaching of robotics, to learners at school and students at university.

3 I-SET Initiatives within the current robotics landscape
The goal of the I-SET project is to inspire and create awareness of Science, Engineering and Technology for students, educators and community leaders. This community engagement project has both an outreach and an engagement focus to ensure that this goal is attained. However, the constraints of volunteerism of academics, and of logistics of time and distance, have necessitated that the I-SET team consider alternative deployment options. These mentorship aspects are identified and discussed in terms of the youth involved in this project.

Figure 1: I-SET Mentoring in Science, Engineering and Technology
3.1 I-SET Learners (Teams and Workshops)

The academics mentor these teams of learners at schools that have partnered with the I-SET project. The school is required to have a memorandum of understanding in place for the I-SET project to engage with the learners. The learners attend robotics sessions as an extra-mural activity after school on a given day.

Learners, too old to participate in the competition, are encouraged to participate in the I-SET project by volunteering as coach mentors to younger and beginner teams, and also by volunteering as competition judges and referees. Thus experiences of mentorship from coaches, mentors and educators are used for the development of the next generation of I-SET teams of learners.

To create awareness of robotics for learners in schools where robotics is not presented, I-SET also presents robotics workshops at Science Expos throughout South Africa. UNISA students volunteer as I-SET Buddies and are trained in robotics to facilitate and present these workshops to learners. The I-SET robotics workshop, usually two hours long, includes the building of a basic robot (brick, two motors and a sensor) and the introductory programming required (move, loop and switch with sensor input). The learners are mentored by the I-SET Buddies and Ambassadors. These workshops are usually presented to groups of up to 30 learners. In the South African context this Buddy mentoring has greater relevance, as the learners are presented with robotics (Science, Engineering and Technology) in their own language and by people they can relate to and see as a role model. Robotics provides an opportunity for a practical presentation of a theoretical concept. At the end of the workshop, each participating learner is presented with an I-SET certificate as evidence of a successful robot building and programming session (i.e. a mentoring session in Science, Engineering and Technology).

It is envisaged that through this awareness of Science, Engineering and Technology, the educators may volunteer to present robotics at the school, develop a school robotics team of learners, and also be part of the I-SET project.

3.2 I-SET Coaches and Mentors

The academics of CSET participate in the I-SET project in a range of roles and portfolios. The responsibilities within the I-SET project may include volunteering as a team coach and/or mentor, as a competition judge and referee, or as a research mentor. For an I-SET team coach mentor, through regular mentor coach sessions, academics guide the understanding of the learners though engineering fundamentals, programming principles and research skills. The academics mentor the educators and community leaders of the I-SET teams.

However, to address the greater need for mentorship in order to increase the number of teams, a UNISA short learning program (SLP) has been launched.

The SLP, I-SET Robotics, has four courses defined, namely: Practical Experience of Engineering & Programming, Components & Pedagogy, Problem Solving, Data & Debugging, and Sensors & Programming. Each semester course of 15 weeks is online. No prior robotics experience is required initially. However, the first two courses are suggested as a pre-requisite for the latter two. The content of the SLP is enhanced by lessons learnt within the community of coaches and mentors, and is used to equip and support a new recruitment of coaches and mentors.

3.3 I-SET Buddies and Ambassadors (students)

Each year the I-SET project is invited to present robotics workshops at science exhibitions, regionally and nationally. To meet these commitments, a call was made in 2012 for Unisa student volunteers for the I-SET project. Only 30 of the 480 applicants could be selected for robotics mentorship and training. These students, known as I-SET Buddies, were recruited to facilitate I-SET workshops. They attend regular training, write reports and also to contribute to the strategic development of I-SET project.

The I-SET Buddies are provided with opportunities to travel to expos to facilitate I-SET workshops. Through these workshops, learners are mentored by Unisa students and given an opportunity to build and program at least one robot. The I-SET Buddy is required to eventually develop and present I-SET Robotics workshops.

The graduating I-SET Buddies have been mentored on social responsibility and opportunities to encourage Science, Engineering and Technology. Thus, the graduates of these students is enhanced through the mentorship.

The I-SET Buddies are also required to volunteer at robotics competitions as judges, referees or in a competition administration capacity at regional and national competitions. I-SET Buddies have also coached and mentored teams of learners participating in the competitions. I-SET has recruited a new cohort of I-SET Buddies in January 2017. Training has commenced.

After two years as I-SET Buddies, these Unisa students are equipped to develop and to present I-SET robotics workshops. These students are then promoted to I-SET Ambassadors. These I-SET Ambassadors will, in turn, mentor the next recruitment of I-SET Buddies. It is envisaged that this title will provide life-long “membership” to the I-SET project.

4 I-SET to Change the Landscape

The following initiatives have been promoted to ensure that a greater community of learners have access to robotics:

4.1 Practical Experience of Engineering and Programming

To increase the number of equipped coaches and mentors, a more practical perspective was required. This SLP was also developed to address the needs of mentors and coaches to understand the requirements for coaching and mentoring a team, and also to prepare a team for a robotics competition. This online course has weekly assignments to encourage mentor and learner participation, and includes a 6 week mini-virtual robotics competition. The final assignment is the showcasing of the achievements to the community.

4.2 Virtual GEAR Robotics Competition

To increase the number of learners, teams can now participate in a robotics competition in their classroom. This is a virtual competition in collaboration with Texas Tech University. The concept of a virtual competition was explored in collaboration in 2015. The teams reside in other countries (e.g. Germany, USA and South Africa). This competition only requires building and programming a robot, and the completion of an Engineering book. The challenge mat consists of items from a hardware store. The competition encourages entry level teams to start. There are two categories of teams; the first-timers are teams that have never competed in a robotics competition before, whilst the global stream allows for teams to form alliances and compete with international teams.

4.3 I-SET Robotics Hub

The I-SET project has been allocated a venue in which to host robotics hub. This opportunity gives the project a home for the EV3 robotics kits, challenge sets and laptops.

4.4 Science Centre robotics

To increase the number of learners that have access to robotics, it is envisaged to develop robotics teams at Science Centres nationwide.

A three-day training workshop was presented to facilitators of these Science Centres.
4.5 I-SET Buddies (2017)

To increase the number of volunteer coaches and mentors to facilitate the I-SET workshops, I-SET sent out a call for the 2017 intake of I-SET Buddies. These students are no longer limited to the proximity of the UNISA Science Campus. Students receive their training material online (or can attend training sessions). For students that do not have robotics kits, an initiative has been launched to make robotics kits available at UNISA libraries at all UNISA regional offices.

4.6 I-SET Coach Mentor Community

The I-SET Coach Mentors are in communication with each other via a closed Facebook group. They also share a Google Drive of teaching and learning resources. It is envisaged that this collection of resource will grow through ongoing collaborative co-creation.

5 Recommendations and Conclusions

The I-SET outreach measurable target is the number of learners who have the opportunity to build and program at least one robot. The I-SET engagement measurable target is the number of schools that have at least one robotics team participating in at least one regional robotics competition. The African saying refers to the fact that it takes a community to raise a child. This paper concludes with the comment that perhaps, in this 21st century, it may take opportunities of community engagement in STEMI (engaging and mentoring) to change the inspired STEMI robotics landscape for all children of South Africa.

6 Acknowledgements

The I-SET project team hereby acknowledges the support of the Unisa Community Engagement and Outreach Directorate, the Fulbright Program, as well as the participation of the learners, educators and community leaders of I-SET.

7 References

Promoting Mathematics and Science competitions: A district initiative
Dr VG Govender
Eastern Cape Department of Education & Nelson Mandela Metropolitan University

This paper focuses on a district initiative to promote Mathematics and Science competitions among schools from disadvantaged areas. These schools were identified by their involvement in projects promoted by the district, province or outside organisations (in collaboration with the district). 10 schools were invited to be a part of the initiative. This initiative consisted of activities which took place in two sessions. The first session consisted of a Natural Sciences Olympiad for grade 8 & 9 learners and Mathematics Relays for grade 10 & 11 learners. The second session consisted of a Science Olympiad (incorporating both Physical Sciences & Life Sciences) for grade 10 & 11 learners and Mathematics Relays for grade 8 & 9 learners. The learner participants appeared to be the top learners of the schools. They completed questionnaires after their activities and provided rich data for this paper. Learners stated that they were honoured to represent their schools in the district competition and made their parents and other well-wishers proud of them. All learners indicated an affinity for Mathematics and the Sciences and appeared to look in these directions for their future careers. Top schools and learners received prizes at the awards function. The competition appears to have paid dividends for most of the schools since more learners have been encouraged to participate in National Mathematics and Science Olympiads in 2017.

Introduction
There are various Mathematics and Science competitions in South Africa. These competitions are used to promote the Mathematics and Sciences at schools. Although there have been great strides in getting learners from disadvantaged schools to participate in such competitions, more needs to be done to ensure that learners from these schools are given opportunities to participate and be successful in these competitions.

This paper focuses on a district initiative to promote Mathematics and Science competitions among schools from disadvantaged areas. These schools were identified by their involvement in projects promoted by the district/ province or outside organisations (in collaboration with the district). Before discussing this initiative further, it is important to examine some of the literature on Mathematics and Science competitions.
The Siyanqoba Regional Olympiad training programme, has been designed with the following aims in mind:

- Participants in Mathematics competitions will be challenged by the problems and this will help improve their problem solving skills.
- Problem solving skills can be further improved by carefully working through the solutions of the competitions.
- Alternative and innovative solutions are given and the problems could be used in classroom discussions on problem solving.
- There is a need for creative problem solving skills in today’s technically oriented market place and expert problem solvers are needed. Practice in problem solving will help to train our future leaders of technological development.

(SAMF, 2017)

While the above mentioned benefits apply to Mathematics competitions, these may also apply to Science competitions. However, one of the key challenges is getting learners from schools in disadvantaged areas to participate in these competitions in big numbers.

Schools from advantaged areas have been involved in Olympiads for quite some time. Govender (2014a) listed the following key factors which contributed to the popularity of Mathematics Olympiads and competitions at some of these schools:

- The role of the teacher in being a driving force behind Mathematics Olympiads at the schools.
- The learning culture of the school in which participation in Mathematics Olympiads has become a “normal” school activity.
- The performance of learners in school mathematics is an important factor as usually the top learners tend to participate in Mathematics Olympiads.
- The involvement of learners in both individual and team events such as Mathematics relays.
- The involvement of parents in terms of encouraging their children to participate in these competitions and providing transport.

One of the inhibiting factors to promoting Mathematics and Science competitions at schools in disadvantaged areas is that teachers, generally, do not have experience in competitions and are not likely to show any enthusiasm for such competitions. This lack of exposure means that teachers may not have a frame of reference in respect of competitions and may not be in a position to encourage participation of their learners in such competitions. Thus, if this situation has to be changed then student teachers should be given the opportunity to do problem solving activities in both the Mathematics and Sciences as part of their training. This would also involve working through Olympiad papers.

Govender (2014b) reports on an initiative to develop pre-service Mathematics teachers’ problem solving abilities. Only one out of 14 students in the group had taken part in a Mathematics Olympiad while at school. In line with the theories on experiential learning, these students would not have been able to pass on these experiences to their own learners. It was important to expose these students to Mathematics competitions so a structured intervention was initiated. The South African Mathematics Challenge was used as a vehicle to expose these students to problem solving in Mathematics. This intervention could be regarded as successful as the students became well-versed in problem-solving and using problem-solving strategies. It augured well for when they started teaching as they had some experience of competitions and with further development should be able to introduce problem solving activities to their own learners.

However, this tends to be more difficult with experienced practicing teachers. Govender (2015b) worked with primary school and high school Mathematics teachers to establish their problem solving capabilities and found that while these teachers are knowledgeable about problem solving and problem solving competitions such as Mathematics Olympiads, they tended to struggle with the problems in these competitions. It is possible that their own difficulty with the problems has made them reluctant to enter their learners for these competitions as they believed these competitions to be “difficult” and that their learners will not cope.

There have been initiatives to promote Science competitions among learners, especially from schools located in disadvantaged areas. A study by Taylor (2011) on the participation of township learners in the Science expo revealed the following:

- The learners conceptualised Expo as an opportunity for success with the notion of success conceptualised in different ways.
- However, their experience of Expo was the opposite of success: they saw themselves as losing, with this outcome attributed to a range of internal and external factors.
- These factors include limited access to resources or not having teachers who may support these kinds of activities.
- Further, some learners see no relation between their classroom science and their Expo projects and the time spent on the Expo projects could have been better spent on their classroom science and focussing on the grade 12 examinations. (Taylor, 2011)

It would appear that these learners, while being enthusiastic about the Expo and hopeful about success, had their enthusiasm tempered with the lack of success in the competition, believing that they should have spent their time with other activities rather than the Expo competition. This is rather unfortunate as the lack of success in competitions does not mean that they did not learn anything. At the same time, if learners are not supported for competitions by their teachers and others, then there is a likelihood of learners performing poorly and becoming negative about such competitions.

SAMF has started a programme to assist learners with preparation for the South African Mathematics Olympiad (SAMO). This programme, called the Siyanqoba Regional Olympiad training programme, has been designed with the following aims in mind:
• Motivate learners to improve their learning of mathematics and in particular to develop higher order thinking skills and problem solving techniques.
• Develop learners' interest in Mathematics.
• Development of lateral thinking skills.
• Allow a number of high achieving local learners to take part in mathematics competitions and hence to raise the standard of local school mathematics.
• Improvement of performance in competitions.
• Develop talent which has been identified through the SAMO.

The purpose of the Siyanqoba programme (in terms of impact) is to:
• Improve the performance of black learners in SAMO and other competitions.
• To have more learners registering for mathematics in secondary schools.
• To have more learners following the STEMI careers.

There will be more about the Siyanqoba programme later in this paper. Another study which is relevant to this paper is by Jennifer Wirt (2011) of the USA. She analysed Science Olympiad participants’ perceptions regarding their experience with the Science and Engineering competition and came up with the following recommendations for education districts in the USA:

• Districts should develop and encourage participation in Science Olympiad and support students and teachers who are interested in starting Science Olympiad teams or who are already involved in the organization.
• Districts should use this research and other research on Science Olympiad to determine which of the components they can put in place in their schools to positively impact regular classroom instruction.
• Several participants spoke about liking the chance to learn in a way that did not involve solely studying from a textbook. They felt that they got real experience in the fields of science and engineering and that it was more significant then what was happening in their classrooms. Thus, the regular classroom is obviously not fulfilling the needs of those students who are intensely interested in science and engineering.
• Districts and educational leaders should use the anecdotal data provided in this study as a basis for looking at their own curriculum. More inquiry and hands-on learning should be taking place in the school classrooms.
• Females do not shy away from the areas of chemistry, physics and engineering. Schools need to take cues from the organization of Science Olympiad teams and look at ways to make the physical sciences and engineering areas more accessible and attractive to females.
• Students enjoy learning. They like both collaboration and competition. Intrinsic and extrinsic rewards keep students motivated.

In summary, this literature survey captures the following key points:

• The importance of Mathematics and Science competitions to promote learning in these subjects.
• There are a number of factors which contribute to the popularity of Olympiads.
• One area in which Mathematics and Science Olympiads could be promoted is during the training of pre-service teachers in Mathematics and the Sciences.
• Some of the more experienced teachers regard problem solving competitions as being “difficult” and are not inclined to encourage their learners’ participation in these competitions.
• Learners from disadvantaged communities, especially townships, appear to be on the “back foot” when it comes to participation in competitions such as a Science Expo due to lack of resources and teacher support. However, there is some support available for learners interested in Mathematics Olympiads.
• Education districts can become the key drivers in promoting Mathematics and Science Olympiads among the schools in the district.

The District initiative

When one examines the literature survey for this paper, there is no doubt that a lot needs to be done in promoting Mathematics and Science Olympiads at schools, especially among schools from disadvantaged areas. In this regard, at least one recommendation of Wirt (2011), that of the role of the education district, should be relevant in a South African context. As stated earlier, this paper focuses on a district initiative to promote Mathematics and Science competitions among schools from disadvantaged areas. These schools were identified by their involvement in projects promoted by the district/ province or outside organisations (in collaboration with the district).

10 schools were invited to be a part of the initiative. This initiative consisted of activities which took place in two sessions. The first session consisted of a Natural Sciences Olympiad for grade 8 & 9 learners and Mathematics Relays for grade 10 & 11 learners. The second session consisted of a Science Olympiad (incorporating both Physical Sciences & Life Sciences) for grade 10 & 11 learners and Mathematics Relays for grade 8 & 9 learners. Each school had to send two learners to participate in each of the Natural Sciences and Science Olympiads and four learners to participate in each of the Mathematics relays. After each activity, learners were surveyed, via a questionnaire, which solicited their responses on a number of key issues such as:

• Their affinity for Mathematics & Science
• Their thoughts on representing their school in this district activity and the views of their friends, parents/guardians or other family members
• How they approached the Olympiad/Relays and their views of the questions in the Olympiad/Relays
• What they learnt from participation in the Olympiad/Relays

(SAMF, 2016)
The competition

The number of learner participants for each competition is shown in table 1.

<table>
<thead>
<tr>
<th>Competition</th>
<th>Grade</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Sciences Olympiad:</td>
<td>8 & 9</td>
<td>16</td>
</tr>
<tr>
<td>Sciences Olympiad</td>
<td>10 & 11</td>
<td>20</td>
</tr>
<tr>
<td>Mathematics Relays 1</td>
<td>10 & 11</td>
<td>40</td>
</tr>
<tr>
<td>Mathematics Relays 2</td>
<td>8 & 9</td>
<td>40</td>
</tr>
</tbody>
</table>

The Natural Sciences Olympiad, for grade 8 & 9 learners, comprised 20 multiple choice questions and covered the various knowledge strands of Natural Sciences. The Mathematics relays for grade 10 & 11 learners comprised 15 mostly syllabus bound questions with the emphasis being on speed and accuracy. Learners worked in pairs for the Mathematics relays; a grade 10 pair and grade 11 pair.

The Science Olympiad, for Grade 10 & 11 learners, consisted of 20 multiple choice questions and included both Physical Sciences and Life Sciences. The Mathematics Relays for grade 8 & 9 learners comprised 20 mostly syllabus bound questions, also with the emphasis on speed and accuracy. They participated in pairs; a grade 8 pair and a grade 9 pair.

Data from the survey of learners

Learner responses (from the questionnaire)

After each activity, learners completed questionnaires. The data received from the various groups of learners are summarised in table 2.

<table>
<thead>
<tr>
<th>Competition</th>
<th>Grade</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Sciences Olympiad</td>
<td>8 & 9</td>
<td>12</td>
</tr>
<tr>
<td>Sciences Olympiad</td>
<td>10 & 11</td>
<td>18</td>
</tr>
<tr>
<td>Mathematics Relays 1</td>
<td>10 & 11</td>
<td>40</td>
</tr>
<tr>
<td>Mathematics Relays 2</td>
<td>8 & 9</td>
<td>40</td>
</tr>
</tbody>
</table>

Their affinity for Mathematics and Science

All learners indicated in their questionnaires their liking of Mathematics, Natural Sciences and Life & Physical Sciences. The actual statements of some of the learners are shown here:

Mathematics (grade 10 & 11)

“I like mathematics because I’m very brilliant at it; I find it easy; also my career needs mathematics”; “It’s very fun doing maths and everyday there are new challenges - that is why I like it very much”; “It is intriguingly fun and I love solving problems especially ones with numbers”; “Mathematics helps me to think critically. I am able to use my skill in maths in everyday life situation such as solving problems”; “It’s one of my favourite subjects and it is very interesting and it also allows me to think more”; “It is fun to work with numbers and solve problems”; “I have always loved solving and counting as a child. It runs in my family and I always understand quickly”.

Mathematics (grade 8 & 9)

“I love mathematics because it teaches us discipline”; “Because you solve problems in many ways”; “It helps you solve problems”; “I need it to reach my goal of being a scientist”; “I like maths because I can use it on a daily basis”; “For me to understand and be better at doing mathematics I have to like it and practice more”; “It is very interesting and it gives me a chance to think hard and prepares me to be able to solve problems”; “I find it enjoyable and challenging and I like challenges”; “It is my best subject”; “Because I want to be a doctor”; “The reason is that it makes your brain fresh and also is good for you to count”; “Because I enjoy it at school and I am at working with numbers”; “It’s a challenge and I love challenges”; “Because I love working with numbers and I understand maths statement, rules, equations”.

Physical Sciences and Life Sciences (grade 10 & 11)

“I like them because I want to pursue a career that combines both of the subjects”; “I’m interested about everything around me and how they are formed and where it all started and these subjects give me the information”; “In science we learn a lot of things that are surrounding us and they are subjects that are very helpful and also hard”; “I like the sciences because these are subjects that seem to be unique to me and I really enjoy it”; “It allows me to see things through different eyes. It also teachers me a lot about nature”; “Because it teaches something that I do not know and how it is made up it”; “Physical and Life Sciences open a new world to possibilities and innovation to better the world we live in”; “Life science is interesting to know about our bodies and what it does”; “Both the subjects are interesting and are about our everyday life”; “Because they are talking about our lives- they are about us”; “Because they show us other information that we do not know”; “I like it because it’s interesting and learn new things every day, especially in Life Sciences”; “These subjects help me to understand how the world functions in depth and as a whole”; “I get to learn about the world around me from the smallest such as atoms to the biggest animals; it is exciting”.

25
Natural Sciences (grades 8 & 9)

"Because I discover many things based on nature;" "Natural Sciences is a very interesting subject in my view;" "Because Natural Sciences tells us about life, natural things e.g. crops, water, people, etc.;" "Because it helps us as young people to be scientists of tomorrow;" "Because I like learning about the human body system and Natural Sciences leads me straight to Life Science which I require for my career;" "You learn very interesting stuff and you get to see stuff you never saw before;" "I have a good teacher and she explains very well;" "It is interesting and people learn about new things and it’s got adventure;" "The main thing that I like about Natural Science is that I don’t just study all the time, I get a chance to see what I’m learning with my eyes;" "It gives much information about our universe and how we get life, which is from the process of photosynthesis;" "Learning about our bodies’ immune system and all living creatures and what do they need in order to survive, make me become so enthusiastic, besides it’s so fascinating to me."

Mathematics Relays (grade 8 to 11)

"I was very proud because there are many grade 10 learners and this shows me to work hard so that they will always select me;” “I’m a very competitive person so when I heard that I was selected I was so confident about this challenge;” “I was very excited and happy to be selected” “I think the school chose me to participate because I improve my performance in maths every term;” “I was happy and really proud of myself. I felt very honourable too;” “When my teacher told me I was excited and happy to represent my school. “I thought we were going to write a test where you will be given time to think so that you can be the last man standing;” “I thought it was difficult thing because it’s the first time I have come for this;” “I was surprised and nervous at the same time, but am happy that I was chosen;” “I was honoured and this has motivated me to be diligent in the future;” “I was very excited and happy to have been chosen.”

The Natural Sciences and Science Olympiads (grade 8 to 11)

“Maths was so bad that my teacher taught us in Natural Sciences Olympiad;” “I thought that the Olympiad would be hard and that the questions were going to be very advanced;” “I was very happy, because I love Natural Sciences;” “I was so happy and read and heard about Sciences Olympiad;” “My thoughts was that I want to make my school feel proud and my teachers see that I’m real- ly desperate to represent my school;” “I was shocked, I was curious to know what we are going to do there;” “Well I was very excited and honoured - I was a bit nerv- ous though;” “I felt nervous because I thought when I mess this Olympiad up I would be embarrassing the whole school. But at the same time I was excited because I am doing what I love;” “I was firstly surprised and shocked that they chose me but then felt happy because you don’t just choose anyone to represent the school;” “I thought I’m going to make my school proud of me and also I was a little bit scared and nervous because I have not been in things like Olympiads before;” “To go out there make my school proud and also to put my school in a higher level;” “I was so excited and happy for myself because I represented my school and I’m sure this will happen again in the future;” “I was so surprised when they selected me as a member of the school team;” “I did not think of this Olympiad as a competition really, it was just another way for me to extend my knowledge and understanding of Physical and Life Sciences;” “I was a bit worried about participating in it, but on the oth- er hand I was proud to have been selected and hope I do get selected again in future for such competitions or projects.”

Reaction of parents, teachers and friends

When learners participate in competitions, there is always some reaction from family and friends. The learners’ words below describe what the re- actions from their parents and others were:

Mathematics Relays (grade 8 to 11)

“Parents said I must do this very well, I must achieve this;” “They were very excited because if was representing my school and they know that I always do well in challenges like this one;” “They were extremely excited especially my mom;” “My family told me that they would support me and also pray for me. My friends said they would support and the school made a right selection;” “They were very happy and proud and encouraged me to keep participating in all sorts of competitions or what ever opportunities that comes my way;” “They were very happy for me and they were also so excited;” “They were very happy and they wished me good luck;” “They said we must keep it up and they wished me all the luck;” “They were happy and they told me to do my best;” “They were so surprised and looked at me as if I want be able to win and I might get very disappointed;” “They just supported me and told me even it don’t win I must just smile and move on;” “My teacher wished me good luck and my mom told me that she was proud of me also me and also wished me good luck.

Natural Sciences and Science Olympiad

“They were very happy, because now they know that I’m really serious about school every day;” “My mother said that I should make her happy and pass the Olympiad;” “They had wished me the best and said they would pray for me to make my school proud for participating in this district Natural Sciences Olympiad;” “They were so happy for me;” “My mom was very proud of me she told me that it nice to be honoured;” “My mother told me that she is proud of me and wished me good luck;” “My parents were so happy and they encourage me to study Natural Science;” “My mom was so happy for me and my dad encouraged me to read more so for him to know that I’m participating in the Natural Sciences Olympiad was very pleasing;” “My parents were impressed and wished me luck. My friends motivated me as well;” “They were very happy for me because my parents never did Physical Sciences and they give me their support to do very well in it;” “My parents were very excited when they heard the good news coming to me;” “They were so surprised when I told them about this;” “Honestly, my parents barely share my passion for these two subjects but judging from their facial expressions they were happy for me in a way;” “They were proud of me and the hard work I have been doing. They were also happy and excited for me;” “They congratulated me and they wish me all the best;” “They were surprised even though I was an achieving student in both Life Sciences and Physical Sciences.”

What learners felt when working through the Olympiads and Mathematics relays:

It would appear that for most of the learners, this was the first time that they had represented their schools in competitions of this nature. It was important to find out how they worked through the questions in the competitions. Some of their responses are shown here:

Mathematics (grades 8 to 11)

“Firstly, the time was not enough. I thought of answering the questions as quickly as I can;” “Honestly, I was very nervous and a bit excited. I enjoyed it but now I have a headache;” “I was thinking about the time right away - my mind was not so focused as I was very nervous;” “I enjoyed the revision, it has freshens my mind, I really en- joyed it;” “I want to do it again. It was also easy;” “I need to show my mathematics skills and I was praying. Some answers I got without using my calculator;” “Because of the time we were given my mind didn’t cope well I was just dead;” “It went so fast because of time;” “I was really nervous, but it was exciting;” “I was just worried if the answers were right and if I was going to struggle with them;” “Time, think fast, you got this, don’t be nervous, you cannot let your team down;” “I thought that the questions were easy and if asked myself, why was I scared;” “I thought of all the things I learnt in class and was thinking of improving my maths marks;” “I was trying to remember some of the things we were taught, and some questions were a bit challenging because we were not taught these sections;” “There were few things while I was answering which was taught by my teacher. That was the sign that I am good listener;” “I think that I’m going to put my school in the first place;” “I was remembering the things my teacher taught us at school. Also remembering that she wanted me to make the school proud;” “I saw the things that my maths teacher taught me at school.”

Natural Sciences and Science Olympiad (grade 8 to 11)

“This do for the school, make the school be proud. Do not only do it for the school do it for yourself and your family;” “Well just to do my best and let God lead me;” “I found out about the things that I didn’t know. I also answered the questions according to my knowledge;” “I was so scared but I tried my best;” “The Lord helped me a lot, a sense of calm and interest was revolving around my mind;” “A lot of things were running through my mind. For example, there was a point where I asked myself if I represented my school well and also if I did enough;” “At first, I thought it was going to be easy and when I went through the paper and I saw the Life Sci- ence questions that made me very nervous;” “I found that some of the questions were difficult and needed some grade 10 work;” “I was so miserable when I answered the questions;” “The thought of me not making it; that I would maybe fail this test/competition; that what have written would turn out to be wrong; but either may I still am grateful to have been writing it;” “I found that Science Olympiad is interesting and I was also happy that the questions were not that hard.”
What they learnt from participating in the District Competition

Mathematics Relays

“I learnt how to calculate quickly, how to solve mathematics when you have a given time”; “I have learnt that as a maths student you really to be faster when calculating in order to be ready for such challenges”; “I learnt that time is important in mathematics relays. Maths is fun when time is limited”; “Time is essential when writing a test or an exam. I have also learnt to be quick when writing and think fast”; “That I have to learn to know how to work more under pressure”; “That I have to manage my time and think fast so that I get to answer all questions”; “I learnt that I must be calm and relaxed when answering”; “Team work is really good”; “I learnt that I must finish in time and be fast”; “That you have to be quick and know how to solve problem”; “I learnt that when you write mathematics you have to be calm and quick”; “I learnt that when you are going to do something be confident but don’t be too confident because you don’t know if other can do better”; “I learnt to think for myself and also use my brain more”; “You must confidence focus and also know why you are there”; “I learnt that at school I have to be more serious not the to learnt and forget because maths will always be maths”; “I learnt that participating in the competitions is a great experience”

Natural Sciences Olympiad and Science Olympiad

“I learnt to not to rush to answer questions because you may make mistakes during the exam time”; “I learnt that taking part in things like these is very helpful because I am passionate about Science”; “I learnt that I should focus more on my studies because there are more opportunities like this one through my studies especially when you are doing Maths and Science”; “I learnt that you must not only focus on what you know best only try focus on the grade to work in order to know something that is not thought in grade 11”; “I learnt many things in this Science Olympiad”; “I learnt there is more to Physical and Life Sciences and not only what our syllabus tells us or what our teachers teach”; “That I should write even harder, knowing that there are opportunities out there for me, but it all can only happen for me if I stay focused, work hard and strive to attain my goals in life”; “That I should believe in myself and have confidence because at first I was so nervous that the questions will be difficult and I was scared of other schools but that ended up well”; “I learnt that believe in yourself and being confident can bring success to your future”; “I learnt that science is important to everyone because you are a human being”; “You have to use your mind”; “Lots of interesting facts”; “I have learnt to read and then answer the questions”; “Now I want to do more about Natural Sciences and not forget the things I have learnt before”; “I learnt that no matter what the people say about you cannot do it, you should just walk tall and do your best”; “I learnt to try to find out more information than I already know and explore Natural Sciences”

Trends from the learners’ responses

There is no doubt that learners provided some rich data for this paper. In this regard, the trends emerging from their responses are written with a view to examining trends and patterns of coherence. Some of these trends are:

- Learners participating in the Mathematics relays and Science Olympiads were the top learners of these schools and all showed a likeness or affinity for Mathematics and Science.
- Their views also indicated how interesting they found these subjects and what they learnt from these subjects.
- They were very proud of being a members of their school teams for this district competition.
- Their parents, as well as some teachers and friends, congratulated them and wished them well for the competitions.
- They realised that these types of competitions were not easy and that they had to work fast and accurately, especially for the Mathematics relays.
- They learnt that time management is a key and that team work is important during the relays.
- Those writing the Natural Sciences Olympiad and Science Olympiad realised the importance of these subjects and that achieving well in the subject depends on how hard they worked.

- It was very interesting and reassuring to note that some of them linked these subjects to their future careers.
- It was also clear that participation in the district competition boosted their confidence in the Science subjects

Table 3: Categories for prizes

<table>
<thead>
<tr>
<th>Mathematics</th>
<th>Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 8 (top 3 learners)</td>
<td>Grade 8 & 9 Natural Sciences (top 3 learners: individual)</td>
</tr>
<tr>
<td>Grade 9 (top 3 learners)</td>
<td>Grade 8 & 9 Natural Sciences (top 3 schools – combined)</td>
</tr>
<tr>
<td>Grade 10 (top 3 learners)</td>
<td>Grade 10 & 11 Sciences (top 3 learners: individual)</td>
</tr>
<tr>
<td>Grade 11 (top 3 learners)</td>
<td>Grade 10 & 11 Sciences (top 3 schools – combined)</td>
</tr>
</tbody>
</table>
Results of the Competition

The points were for the various events were calculated as follows: 10 points were allocated for first position; 6 points for second position and 2 points for third position. In this regard, to balance both the Mathematics and Science components of the District competition, prizes were awarded according to the categories shown in table 2. Thus, a maximum of 80 points was on offer, 40 points for Mathematics and 40 points for the Sciences.

The next table shows how the schools performed:

Table 4: Categories and points scored

<table>
<thead>
<tr>
<th>Name of school</th>
<th>Grade 8 Maths</th>
<th>Grade 9 Maths</th>
<th>Grade 10 Maths</th>
<th>Grade 11 Maths</th>
<th>Natural Sciences Individual</th>
<th>Natural Sciences combined</th>
<th>Science Individual</th>
<th>Science combined</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>4</td>
<td>44</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>06</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>02</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>02</td>
<td>4</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>02</td>
<td>4</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>00</td>
<td>4</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>TOTAL</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Of the 10 schools, only two schools did not get any points at all. The eight other schools all managed some points. All prize winners were invited to the District Science Awards. The top learners in each category received gifts and certificates. The top three schools received trophies and certificates.

Some interesting points (about the schools)

School B (the top school) is located in a former Black area and had only Black participants; School J (the second school) is located in a former Indian area but the majority of learners who represented the school were Black. School C is located in a former Coloured area and had both Black and Coloured participants.

Findings

- It would be reasonable to say that this district initiative to promote Mathematics and Science competitions among schools in disadvantaged areas has provided some useful pointers in taking Mathematics and Science competitions to learners at these schools. The rich data emerging from this district initiative is now incorporated in the findings of this paper.
- There are various ways in which Mathematics & Science competitions could be promoted at schools. One of these could be for education district to target a few schools based on certain criteria and have inter-school competitions at a local level.
- A district initiated competition should be well planned and structured. Learners should know what is expected of them at the competition.
- Since the majority of learners may be participating in the competition for the first time, it is important for the competition to be conducted in a non-threatening environment. In the district competition described in this paper, learners worked in pairs for the Mathematics relays and the questions appeared to be within their scope. The questions in the Natural Sciences and Science Olympiad also appeared to be within the scope of the learners. Thus, it would be fair to claim that the competition was not intimidating for the learners. This would probably explain why learners were eager to participate in more competitions of this nature.
- Just as learners represent their schools in sporting codes and cultural activities, learners are proud to represent their schools in Mathematics and Science competitions, even at a local level. In so doing, their confidence, in their own abilities, is boosted. Learners would like to do well in these competitions and may go into these competitions having done some preparation and revision. This has a positive spinoff for them as their performance in their Mathematics and Science subjects at schools are likely to improve further.
- Participation in local competitions also gives learners the confidence to go further and participate in regional, provincial and national competitions. In fact, of the 10 schools which participated in this district initiative, eight of the schools have learners who are part of the Siyanqoba Regional Olympiad training programme (for Mathematics) in the district. The top three schools have 33 of the 80 participants in the programme (School B – 15; School J – 10; School H – 8). All these learners wrote the first round of the SAMO on 15 March 2017. Further, all schools which participated in the district competition had registered learners to write the Natural Sciences Olympiad and the National Sciences Olympiad for 2017.
- When learners participate in Mathematics and Science competitions, they become more aware of the importance of these key subjects and the need to do well in these subjects. Top performances in Mathematics, Physical Sciences and Life Sciences give learners direct access to Science and Engineering programmes at universities.
- There is a need to increase the pool of top Mathematics and Science learners from all schools, especially those from disadvantaged areas. This may be done through various initiatives, including getting top learners from schools in disadvantaged areas to participate in Mathematics and Science competitions. This may boost the number of learners taking up Science and Engineering careers. These learners can serve as role models to other learners from their schools.
Conclusion

There are a number of obstacles which prevent learners from disadvantaged schools from being prepared for and participating in National Mathematics and Science competitions in South Africa. These obstacles include a lack of teacher and parental support, lack of resources and, perhaps, a lack of a competitive environment or an Olympiad culture at the schools. This means that learners at these schools are not given the opportunity to develop or showcase their talents outside their school environment. This paper has shown that it is possible for education districts to intervene and change this unfortunate state of affairs.

References

SAMF (2016): Siyanqoba Regional Olympiad Training: 2016 Brief (Received via email)

STEMI Olympiads and Competitions and Community of Practice Conference

©STEMI Olympiads and Competitions and Community of Practice Conference
2017

STEMI Olympiads and Competitions Community of Practice Conference
Theme of the conference - Building a culture of volunteerism and community service in Science, Technology, Engineering, Mathematics, and Innovation (STEMI) 2017
ISBN 978-0-6399307-1-8

Theme of the conference - Building a culture of volunteerism and community service in Science, Technology, Engineering, Mathematics, and Innovation (STEMI) 2018

Published by:
South African Agency for Science and Technology Advancement

Tel +27 (0)12 392-9300
Fax +27 (0)12 320-7803
Email info@saasta.ac.za

Physical address
Didacta Building, 211 Nana Sita Street, Pretoria, South Africa

The South African Agency for Science and Technology Advancement (SAASTA) is a business unit of the National Research Foundation (NRF) with the mandate to advance public awareness, appreciation and engagement of science, engineering, innovation and technology in South Africa.

Science, through research, has a crucial role to play in the growth of South Africa’s economy. Active dialogue and engagement between science and society ensures that scientific research findings are easily translated into relevant, appropriate and beneficial innovation and entrepreneurial opportunities. Research findings should also have an impact on policy and social conditions in a country. This can only be achieved when science becomes a daily dialogue and discourse.

The fundamental principles of SAASTA’s success in advancing a culture of engagement with science in South Africa lies in its synergistic approach. SAASTA initiatives fall under three key strategic areas:

- **Science Education**, through which we build up the supply of tomorrow’s scientists and innovators;
- **Science Awareness**, through which we engage the public with the phenomena of science, engineering and technology;
- **Science Communication**, through which we share science and technology achievements with the public, building up their appreciation of benefits of science).

The three areas are interdependent, each enhancing the effectiveness of the other, while accommodating different target audiences and creating opportunities for joint initiatives across several government departments, higher education institutions, science councils, science centres and other science agencies.

Science advancement is integrated in every level of the business of the NRF. SAASTA, the National Research Facilities (that focus on the fields of astronomy, biodiversity and conservation, and nuclear sciences) and the Research, Innovation Support and Advancement office (that supports research, researchers and the provision of world-class research infrastructure through a grant-making programme) are implementing a cross-cutting science engagement plan.

Mission

To advance public awareness, appreciation of and engagement with science, technology, engineering, mathematics and innovation in South Africa.

Vision

SAASTA aims to be the leading science advancement agency communicating the value and impact of science and technology in a dynamic knowledge economy, and simultaneously building the science engineering technology human resource based in South Africa.